18.06 MIDTERM 1

October 2, 2019 (50 minutes)

Please turn cell phones off completely and put them away.
No books, notes, or electronic devices are permitted during this exam.
You must show your work to receive credit. JUSTIFY EVERYTHING.
Please write your name on ALL pages that you want graded (those will be the ones we scan).
The back sides of the paper will NOT be graded (for scratch work only).
Do not unstaple the exam, nor reorder the sheets. If you need more space, there are extra sheets at the end of this book, but write the problem number at the top of each.

Problem 1 has 3 parts, Problem 2 has 4 parts, Problem 3 has 4 parts.

NAME:

MIT ID NUMBER:

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

PROBLEM 1

(1) Use Gaussian elimination to write the matrix $A=\left[\begin{array}{ccccc}1 & 0 & 2 & 0 & 0 \\ -1 & 2 & -2 & -1 & 2 \\ 0 & -2 & 0 & 0 & -1 \\ 0 & 0 & 0 & -2 & 2\end{array}\right]$ as $A=L U$,
where L is a lower triangular 4×4 matrix and U is a 4×5 matrix in row echelon form.

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

(2) Express the matrix L in part (1) as a product of elimination matrices $E_{i j}^{(\lambda)}$ for various $i>j$ and constants λ. Then do the same for its inverse L^{-1}.
(10 pts)
(3) With the same notations as in part (1), find a permutation matrix P such that $P A^{\prime}=L U$, where $A^{\prime}=\left[\begin{array}{ccccc}-1 & 2 & -2 & -1 & 2 \\ 1 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -2 & 2 \\ 0 & -2 & 0 & 0 & -1\end{array}\right]$.

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

PROBLEM 2

NAME:

Consider the system of equations:

$$
\left\{\begin{array}{l}
a-3 b+6 c-d=1 \\
-2 a+5 b-11 c+2 d=-2
\end{array}\right.
$$

(1) Write the system as $A\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\mathbf{b}$ for a suitably chosen 2×4 matrix A and 2×1 vector \mathbf{b}.
(2) Use Gauss-Jordan elimination to put A in reduced row echelon form.
(10 pts)

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

(3) What are basis vectors for the nullspace of A ? What is its dimension?
(4) What is the general (i.e. complete) solution of the system $(*)$?
(10 pts)

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

PROBLEM 3

Consider the matrix $B=\left[\begin{array}{lll}1 & 1 & 5 \\ 2 & 0 & 4 \\ 3 & 1 & 9\end{array}\right]$.
(1) Put the matrix in row echelon form, and compute a basis for its column space. (15 pts)

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

(2) Find a linear combination of the columns of B which is 0 .
(5 pts)
(3) Compute the matrix $S=B^{T} B$ and the difference $S^{T}-S$.
(10 pts)
(4) Explain why for any 3×3 matrix X, the product $X B$ cannot be invertible.
(5 pts)

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

Continuation of work on problem number NAME:

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

Continuation of work on problem number NAME:

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

Continuation of work on problem number NAME:

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

